BL-M02D1, a novel Trop2-targeting ADC, demonstrates robust anti-tumor efficacy in preclinical evaluation

Yong Zhang, Weili Wan, Shi Zhuo, Lan Chen, Gangrui Li, Shuwen Zhao, Jahan Salar Khalili, Sa Xiao, Yongqi Yan, Xuejiao Shen, Yi Zhu. Sichuan Balti Pharmaceutical Co., Ltd., Chengdu, China, Systimmune Inc., Redmond, WA

Abstract

Trop2, also known as trophoblast antigen 2, is a transmembrane glycoprotein. It is therapeutically targeted in cancer due to its over-expression in a variety of human carcinomas. To develop a promising therapeutic anti-tumor agent, we generated BL-M02D1, an anti-Trop2-Ed-04 ADC. It is comprised of a novel monoclonal antibody against Trop2 (huT4D3), a cetuximab B cleavable linker, and a novel topoisomerase I inhibitor agent (Ed-04). The novel Ed-04 is a derivative of the alkyd camptothecin and mediates cell cycle arrest at the S phase and subsequent apoptosis. BL-M02D1 achieves a high drug-to-toxin ratio (DAR=8) with a highly stable linker.

The antitumor efficacy of BL-M02D1 was evaluated in comparison to a commercialized Trop2-targeting ADC, IMMU-132, in xenograft tumor models. BL-M02D1 exhibited stronger tumor inhibition capacity than IMMU-132 at lower doses in the gastric cancer cell line NCI-N87, the breast cancer cell line MDA-MB-231, and the non-small cell lung cancer line HCC827 xenograft models. BL-M02D1 exhibited potent bystander effects, exemplified by strong tumor inhibition in a heterogeneous xenograft model of Trop2-positive and Trop2-negative tumor cells (A431 and SW620). This characteristic of BL-M02D1 was also compared to IMMU-132. In the heterogeneous Trop2 xenograft model (A431 and SW620), BL-M02D1 exhibited higher tumor inhibition capacity than IMMU-132, indicating that BL-M02D1 possesses a more potent bystander effect than IMMU-132.

In summary, these studies suggest BL-M02D1, a novel Trop2-targeting ADC, is potentially more efficacious in the treatment of Trop2-expressing carcinomas than IMMU-132. The clinical phase I has been progressing and the available data exhibit excellent efficacy in breast cancer therapy with manageable toxicity.

Therapeutic Mechanism of Action

BL-M02D1: TROP2 ADC

- **αTROP2** Human TROP2 Affinity: Intermediate
- **DAR = 8** Cat B cleavable linker Ed-04 (TOPI inhibitor)
- **wt Fc IgG1**

BL-M02D1 Proliferation inhibition in vitro

- **BL-M02D1** structure mediated cytotoxicity enhancements in gastric cancer NCI-N87, breast cancer MDA-MB-231, and non-small cell lung cancer HCC827 xenograft models. BL-M02D1 achieves strong tumor inhibition capacity than IMMU-132 at lower doses in the gastric cancer cell line NCI-N87, the breast cancer cell line MDA-MB-231, and the non-small cell lung cancer line HCC827 xenograft models. BL-M02D1 exhibits a high drug-to-toxin ratio (DAR=8) with a highly stable linker.

BL-M02D1 Cell Binding to TROP2 expressing cells

BL-M02D1 Bystander-based cytotoxicity inhibition in vitro

- **BL-M02D1** anti-tumor efficacy in heterogeneous TROP2 expression model was superior to IMMU-132 and DS-1062 bispecific (inhouse).
- **Dramatic potency difference is evident at 3 mg/kg dose level but also at 6 mg/kg dose level**

Summary

- BL-M02D1 exhibited stronger tumor inhibition capacity than IMMU-132 at lower doses in the gastric cancer NCI-N87, the breast cancer MDA-MB-231, and the non-small cell lung cancer HCC827 xenograft models.
- BL-M02D1 exhibited potent bystander effects, exemplified by strong in vitro activity with Trop2-positive and Trop2-negative tumor lines (A431 [TROP2 ratio 187.64] and SW620 [TROP2 ratio 1.49]).
- In the heterogeneous Trop2 xenograft model (A431 [TROP2 ratio 187.64] and SW620 [TROP2 ratio 1.49]), BL-M02D1 exhibited higher tumor inhibition capacity than IMMU-132, indicating that BL-M02D1 possess a more potent bystander effect than IMMU-132 and biosimilar DS-1062 (inhouse).
- These results suggest BL-M02D1 is potentially more efficacious in the treatment of Trop2-expressing carcinomas than IMMU-132.

Acknowledgments

The authors acknowledge the efforts and contributions of numerous staff of Systimmune Inc. and Balti Pharmaceuticals who worked on the development of BL-M02D1.

References

- BL-M02D1 clinical trials: A Study of BL-M02D1 in Patients with Locally Advanced or Metastatic Gastric Adenocarcinoma or Other Solid Tumors. (ClinicalTrials.gov Identifier: NCT05385692)
- BL-M02D1 in Patients with Locally Advanced or Metastatic Non-Small Cell Lung Cancer (ClinicalTrials.gov Identifier: NCT03394769)
- BL-M02D1 in Patients with Locally Advanced or Metastatic Pancreatic Head Cancer Cancer (ClinicalTrials.gov Identifier: NCT03728856)